skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bóna, Miklós"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We establish a tantalizing symmetry of certain numbers refining the Narayana numbers. In terms of Dyck paths, this symmetry is interpreted in the following way: if $$w_{n,k,m}$$ is the number of Dyck paths of semilength $$n$$ with $$k$$ occurrences of $UD$ and $$m$$ occurrences of $UUD$, then $$w_{2k+1,k,m}=w_{2k+1,k,k+1-m}$$. We give a combinatorial proof of this fact, relying on the cycle lemma, and showing that the numbers $$w_{2k+1,k,m}$$ are multiples of the Narayana numbers. We prove a more general fact establishing a relationship between the numbers $$w_{n,k,m}$$ and a family of generalized Narayana numbers due to Callan. A closed-form expression for the even more general numbers $$w_{n,k_{1},k_{2},\ldots, k_{r}}$$ counting the semilength-$$n$$ Dyck paths with $$k_{1}$$ $UD$-factors, $$k_{2}$$ $UUD$-factors, $$\ldots$$, and $$k_{r}$$ $$U^{r}D$$-factors is also obtained, as well as a more general form of the discussed symmetry for these numbers in the case when all rise runs are of certain minimal length. Finally, we investigate properties of the polynomials $$W_{n,k}(t)= \sum_{m=0}^k w_{n,k,m} t^m$$, including real-rootedness, $$\gamma$$-positivity, and a symmetric decomposition. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Springer (Ed.)
    We call a pair of vertex-disjoint, induced subtrees of a rooted tree twins if they have the same counts of vertices by out-degrees. The likely maximum size of twins in a uniformly random, rooted Cayley tree of size n → ∞ is studied. It is shown that the expected number of twins of √ size (2 + δ) log n · log log n approaches zero, while the expected number √ of twins of size (2 − δ) log n · log log n approaches infinity. 
    more » « less